THE MINIMUM MULTIPLICITY OF STAR GRAPHS

JEONG-HWAN LEE*, SUNG-YUN YANG**, AND SANG-MOK KIM †

ABSTRACT. In 1972, the Ramsey number $r(S_{\alpha}, S_{\beta})$ with respect to star graphs was given by Harary, where S_t denotes the star graph of order t+1. While this number says just the existence of S_{α} , or \overline{S}_{β} , the compliment of S_{β} , in every graph G of order $r(S_{\alpha}, S_{\beta})$, it does not exactly say anything about the number of S_{α} , and \overline{S}_{β} in the graph. In this paper, we first enumerate the total number of star graphs of order t and the complement graphs of star graphs of order t along with the degree sequence of G, denoted by $\sigma_t(G)$. Next, we determine the minimum number $\sigma_t(\mathcal{G}_n)$ among $\sigma_t(G)$'s for $G \in \mathcal{G}_n$, where \mathcal{G}_n is the set of all graphs of order n. Finally, as a corollary, we construct a 'minimal graph' of order $r(S_t, S_t)$ in which there are $\sigma_t(\mathcal{G}_n)$ star graphs S_t 's and the compliments of star graphs \overline{S}_t 's.

2000 Mathematics Subject Classification. 05C55.

Keywords and Phrases. ramsey number, minimum multiplicity.

1. Introduction

For graphs G_1 , and G_2 , the Ramsey number with respect to G_1 , and G_2 , denoted by $r(G_1, G_2)$ is defined as the least integer n such that every graph G of order n contains G_1 , or \overline{G}_2 , the complements of G_2 . The Ramsey number with respect to star graphs $r(S_{\alpha}, S_{\beta})$ is given by Harary [2], as follows;

$$r(S_{\alpha}, S_{\beta}) = \begin{cases} \alpha + \beta - 1 & \text{if } \alpha, \text{ and } \beta \text{ are both even.} \\ \alpha + \beta & \text{otherwise,} \end{cases}$$

where S_t denotes the star graph of order t+1, that is the complete bipartite graph $K_{1,t}$.

Let \mathcal{G}_n be the set of all graphs of order n. For a star graph S_t , an internal vertex v of S_t is a vertex with deg v = t. We use the notations $s_t(G)$, $\overline{s}_t(G)$, and $s_t(v, G)$ to denote the number of S_t in G, the number of \overline{S}_t in G, and the number of S_t containing a vertex v, respectively. Define $\sigma_t(G) = s_t(G) + \overline{s}_t(G)$, called the S_t -multiplicity of G. Lastly, we define the minimum S_t -multiplicity of order n, as follows;

$$\sigma_t(\mathcal{G}_n) = \min_{G \in \mathcal{G}_n} \left\{ \sigma_t(G) \right\}.$$

In 1959, A. W. Goodman [1] enumerated the total number of K_3 and \overline{K}_3 for a given degree sequence of a graph G, and determined their minimum for a given order. In this paper, we address the analogous question on the total number of star graphs and the complements of star graphs in a graph, and the minimum S_t -multiplicity among the graphs of order of n. The exact values of $\sigma_t(\mathcal{G}_n)$ are determined for the

[†] the corresponding author.

^{*, **} undergraduate students.

cases of n modulo 4, respectively. As a corollary of this result, we finally have the minimum S_t -multiplicity $\sigma_t(\mathcal{G}_r)$ for $r = r(S_t, S_t)$, as follows.

$$s_t(G) + s_t(\overline{G}) \ge \sigma_t(\mathcal{G}_r) = \begin{cases} 1 & \text{if } t \text{ is even} \\ 2t & \text{if } t \text{ is odd} \end{cases}$$

Furthermore, we construct a 'minimal graph' of order $r(S_t, S_t)$ with the minimum S_t -multiplicity $\sigma_t(\mathcal{G}_n)$.

2. Counting properties of star graphs

Let G be a graph and $v \in V(G)$. For a positive integer t, we have $s_t(v, G) = {\deg v \choose t}$ since S_t consists of an internal vertex v, and t vertices adjacent to v. Now we count $\sigma_t(G)$ for a graph G, as follows.

Lemma 1. Let G be a graph. Then

$$\sigma_t(G) = \sum_{v \in G} {\deg v \choose t} + \sum_{v \in G} {\overline{\deg} \ v \choose t},$$

where $\overline{\deg} v$ is the number of non-adjacent vertices to v.

Proof. Note that

$$s_t(G) = \sum_{v \in G} s_t(v, G) = \sum_{v \in G} \binom{\deg v}{t}, \text{ and}$$

$$s_t(\overline{G}) = \sum_{v \in \overline{G}} s_t(v, \overline{G}) = \sum_{v \in \overline{G}} \binom{\deg v}{t} = \sum_{v \in G} \binom{\overline{\deg} v}{t}.$$

Since
$$\sigma_t(G) = s_t(G) + \overline{s}_t(G) = s_t(G) + s_t(\overline{G})$$
, the statement holds.

In order to evaluate minimum of $\sigma_t(G)$ with graphs G of order n, which is $\sigma_t(\mathcal{G}_n)$, we give the following inequality standing for combination of integers.

Lemma 2. Let $a, b, t \in \mathbb{N}$ with $a \ge b \ge t$, and let a - b = k. Then

$$\binom{a}{t} + \binom{b}{t} \ge \binom{a - \lfloor \frac{k}{2} \rfloor}{t} + \binom{b + \lfloor \frac{k}{2} \rfloor}{t}$$

where the equality holds when $t, k \in \{0, 1\}$.

Proof. If $t, k \in \{0, 1\}$, then the equality holds. Let $t \ge 2$, $k \ge 2$ and a - b = k. Note that for $k \ge 2$

$$\binom{a}{t} + \binom{b}{t} > \binom{a-1}{t} + \binom{b+1}{t}.$$

By applying this process $\lfloor \frac{k}{2} \rfloor$ times, we have

$$\binom{a}{t} + \binom{b}{t} > \binom{a - \lfloor \frac{k}{2} \rfloor}{t} + \binom{b + \lfloor \frac{k}{2} \rfloor}{t}.$$

Now, we give two distinct constructions of some graphs with certain order conditions which will be used for the case when $\sigma_t(G) = \sigma_t(\mathcal{G}_n)$ in Theorem 7. It is well-known that the circulant graph $\operatorname{Circ}(n;X)$ is defined as follows (see [3]). For a positive integer n and a subset X of the set of integers $1, 2, \ldots, \lfloor \frac{n}{2} \rfloor$, called the connections,

- $V(\operatorname{Circ}(n;X))$ is \mathbb{Z}_n , and
- $ij \in E(\operatorname{Circ}(n; X))$ if and only if $|i j| \in X$.

By using this method to construct circulant graphs, the following Construction 3 gives two k-regular graphs of order n for integer k with $0 \le k \le n-1$.

Construction 3. Let n and k be positive integers with $0 \le k \le n-1$.

- (1) If k is even, then set $X = \{1, 2, ..., \frac{k}{2}\}$, and we have Circ(n; X), which is a k-regular graph of order n.
- (2) If n is even and k is odd, then set $X = \{1, 2, ..., \lfloor \frac{k}{2} \rfloor, \frac{n}{2}\}$ and we have Circ(n; X), which is a k-regular graph of order n.

We remark that, from Construction 3, we always have a k-regular graph of order n when nk is an even integer.

Construction 4. We construct G = (V, E) of order 4u + 3, as follows.

V is defined as the union of mutually disjoint sets V_1, V_2, W_1 and W_2 such that $|V_1| = 1, |V_2| = 2u, |W_1| = 2,$ and $|W_2| = 2u.$ Next, we define the edge set E, as follows. (See example 5)

- (1) If $v \in V_1$, $w \in V_2$, then $vw \in E$.
- (2) If $v \in V_1$, $w \in W_1$ or W_2 , then $vw \notin E$.
- (3) If $v, w \in V_2$, then $vw \in E$ for $v \neq w$.
- (4) If $v \in V_2$, $w \in W_1$, then $vw \notin E$.
- (5) Let $V_2 = \{v_0, v_1, \dots, v_{2u-1}\}$, $W_2 = \{w_0, w_1, \dots, w_{2u-1}\}$. For $v_i \in V_2$ and $w_j \in W_2$, $v_i w_j \in E$ if i = j. Otherwise, $v_i w_j \notin E$.
- (6) If $v \in W_1$, $w \in W_1$, then $vw \in E$.
- (7) If $v \in W_1$, $w \in W_2$, then $vw \in E$.
- (8) Let $w_i \in W_2$ be labeled i with $i = 0, 1, \ldots, 2u 1$. Each vertex w_i is adjacent to vertices $i \pm 1, i \pm 2, \ldots, i \pm (u 1) \pmod{2u}$.

Example 5. The graph of order 11 from Construction 4 is given as follows;

Now, we give some properties of the graph constructed from Construction 4, as follows.

Proposition 6. The graph G from Construction 4 satisfies the following degree properties.

- (i) $\deg v = 2u$ for $v \in V_1$.
- (ii) $\deg v = 2u + 1$ for all $v \in V \setminus V_1$.

Proof. Let v_1, v_2, w_1 , and w_2 be some vertices in V_1, V_2, W_1 , and W_2 , respectively. Then, we have

(i)
$$\deg v_1 = |\{v \in V(G) \mid v_1 v \in E\}| = |\{v \in V_2 \mid v_1 v \in E\}| = 2u.$$

(ii)
$$\deg v_2 = |\{v \in V(G) \mid v_2 v \in E\}|$$

= $|\{v \in V_1 \mid v_2 v \in E\}| + |\{v \in V_2 \mid v_2 v \in E\}| + |\{v \in W_2 \mid v_2 v \in E\}|$
= $1 + (2u - 1) + 1 = 2u + 1$.

(iii)
$$\deg w_1 = |\{v \in V(G) \mid w_1 v \in E\}|$$

= $|\{v \in W_1 \mid w_1 v \in E\}| + |\{v \in W_2 \mid w_1 v \in E\}|$
= $1 + 2u$

(iv)
$$\deg w_2 = |\{v \mid w_2 v \in E\}|$$

= $|\{v \in V_2 \mid w_2 v \in E\}| + |\{v \in W_1 \mid w_2 v \in E\}| + |\{v \in W_2 \mid w_2 v \in E\}|$
= $1 + 2 + (2u - 2) = 2u + 1$

3. Determination of $\sigma_t(\mathcal{G}_n)$

We now establish $\sigma_t(\mathcal{G}_n)$, as follow.

Theorem 7. Let G be a graph of order $n \geq r(S_t, S_t)$.

$$\sigma_{t}(\mathcal{G}_{n}) = \begin{cases} n \left[\binom{\frac{n}{2}}{t} + \binom{\frac{n}{2} - 1}{t} \right] & \text{if } n = 2u \\ 2n \binom{\lfloor \frac{n}{2} \rfloor}{t} & \text{if } n = 4u + 1 \end{cases}$$

$$2(n-1)\binom{\lfloor \frac{n}{2} \rfloor}{t} + \binom{\lfloor \frac{n}{2} \rfloor + 1}{t} + \binom{\lfloor \frac{n}{2} \rfloor - 1}{t} & \text{if } n = 4u + 3 \end{cases}$$

Proof. Let G be a graph of order n. Note that

$$\sigma_t(\mathcal{G}_n) = \min_{G \in \mathcal{G}_n} \{ \sigma_t(G) \}$$

$$= \min \{ s_t(G) + s_t(\overline{G}) \mid G \in \mathcal{G}_n \}$$

$$= \min \left\{ \sum_{v \in G} \left[\left(\frac{\deg v}{t} \right) + \left(\frac{\overline{\deg} v}{t} \right) \right] \mid G \in \mathcal{G}_n \right\}.$$

We have the following result from lemma 2.

(1) For n = 2u, we have

$$\sigma_t(\mathcal{G}_n) \ge \sum_{i=1}^{2u} \left[\binom{u}{t} + \binom{u-1}{t} \right] = 2u \left[\binom{u}{t} + \binom{u-1}{t} \right],$$

where the equality holds when $\deg v = u - 1$ or $\deg v = u$ for all $v \in G$. We notice that the lower bound is tight since there exists the *u*-regular graph of order 2u from Construction 3.

(2) For n = 4u + 1, we have

$$\sigma_t(\mathcal{G}_n) \ge \sum_{i=1}^{4u+1} \left[\binom{2u}{t} + \binom{2u}{t} \right] = (8u+2) \binom{2u}{t}.$$

The equality holds when $\deg v = 2u$ for all $v \in V(G)$ since the 2u-regular graph exists from Construction 3.

(3) For n = 4u + 3, we have

$$\sigma_t(\mathcal{G}_n) \ge \sum_{i=1}^{4u+3} \left[\binom{2u+1}{t} + \binom{2u+1}{t} \right].$$

Note that $\deg v=2u+1$ for all $v\in G$ so that $\sum_{v\in G}\deg v=(4u+3)(2u+1)=2|E|$, which is a contradiction. Thus there are even number of vertices of odd degree. If a vertex has an even degree, then $\sigma_t(\mathcal{G}_n)=\sum_{i=1}^{4u+2}\left[\binom{2u+1}{t}+\binom{2u+1}{t}\right]+\binom{2u}{t}+\binom{2u+2}{t}$. Here, the equality holds when the degree sequence of G is as follows:

$$[2u+1,\ldots,2u+1,2u]$$
 or $[2u+2,2u+1,\ldots,2u+1]$.

Then, Construction 4 gives the graphs having these degree sequences.

Corollary 8. Let G be a graph of order $n = r(S_t, S_t)$. Then

$$s_t(G) + s_t(\overline{G}) \ge \sigma_t(\mathcal{G}_n) = \begin{cases} 1 & \text{if } t \text{ is even} \\ 2t & \text{if } t \text{ is odd.} \end{cases}$$

Proof. From Harary [2], note that

$$n = r(S_t, S_t) = \begin{cases} 2t - 1 & \text{if } t \text{ is even} \\ 2t & \text{if } t \text{ is odd.} \end{cases}$$

(i) If t is even, then n = 2t - 1 so that

$$\sigma_{t}(\mathcal{G}_{n}) = 2(n-1) \binom{\lfloor \frac{n}{2} \rfloor}{t} + \binom{\lfloor \frac{n}{2} \rfloor + 1}{t} + \binom{\lfloor \frac{n}{2} \rfloor - 1}{t}$$

$$= 2(2t-2) \binom{\lfloor \frac{2t-1}{2} \rfloor}{t} + \binom{\lfloor \frac{2t-1}{2} \rfloor + 1}{t} + \binom{\lfloor \frac{2t-1}{2} \rfloor - 1}{t}$$

$$= 2(2t-2) \binom{t-1}{t} + \binom{t}{t} + \binom{t-2}{t}$$

$$= 1.$$

(ii) If t is odd, then, n = 2t so that

$$\sigma_t(\mathcal{G}_n) = n \left[\binom{\frac{n}{2}}{t} + \binom{\frac{n}{2} - 1}{t} \right]$$

$$= 2t \left[\binom{\frac{2t}{2}}{t} + \binom{\frac{2t}{2} - 1}{t} \right]$$

$$= 2t \left[\binom{t}{t} + \binom{t - 1}{t} \right]$$

$$= 2t$$

From Corollary 8, we obtain the total number of S_t and \overline{S}_t in the minimal graph of order $r(S_t, S_t)$ given by Construction 3 and Construction 4, respectively.

ACKNOWLEDGEMENT

The present research has been conducted by the Research Grant of Kwangwoon University in 2016.

References

- [1] Adolph W. Goodman, On sets of acquaintances and strangers at any party. The American Mathematical Monthly 66-9 (1959) 778-783.
- [2] F. Harary, Recent results on generalized Ramsey theory for graphs, Graph Theory and Applications, Springer Berlin Heidelberg, (1972) 125-138.
- [3] Gross, Yellen, and Zhang, Handbook of graph theory, CRC Press. (2014) 23-24.

JEONG-HWAN LEE, DEPARTMENT OF MATHEMATICS, KWANGWOON UNIVERSITY E-mail address; hwani@kw.ac.kr

Sung-Yun Yang, Department of Mathematics, Kwangwoon University $E\text{-}mail\ address$: kuturu@naver.com

SANG-MOK KIM, DEPARTMENT OF MATHEMATICS, KWANGWOON UNIVERSITY, SEOUL 139-701, KOREA

 $E ext{-}mail\ address: smkim@kw.ac.kr}$